3.632 \(\int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx\)

Optimal. Leaf size=322 \[ -\frac {4 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \left (a g^2+c f^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 \sqrt {c} g^2 \sqrt {a+c x^2} \sqrt {f+g x}}+\frac {4 \sqrt {-a} \sqrt {c} f \sqrt {\frac {c x^2}{a}+1} \sqrt {f+g x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 g^2 \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}}}+\frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g} \]

[Out]

2/3*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/g+4/3*f*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*g/(-a*g+f
*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*c^(1/2)*(g*x+f)^(1/2)*(c*x^2/a+1)^(1/2)/g^2/(c*x^2+a)^(1/2)/((g*x+f)*c
^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)-4/3*(a*g^2+c*f^2)*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),
(-2*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(c*x^2/a+1)^(1/2)*((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1
/2)))^(1/2)/g^2/c^(1/2)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 322, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {735, 844, 719, 424, 419} \[ -\frac {4 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \left (a g^2+c f^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 \sqrt {c} g^2 \sqrt {a+c x^2} \sqrt {f+g x}}+\frac {4 \sqrt {-a} \sqrt {c} f \sqrt {\frac {c x^2}{a}+1} \sqrt {f+g x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 g^2 \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}}}+\frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + c*x^2]/Sqrt[f + g*x],x]

[Out]

(2*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(3*g) + (4*Sqrt[-a]*Sqrt[c]*f*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[Ar
cSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*g^2*Sqrt[(Sqrt[c]*(f +
g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) - (4*Sqrt[-a]*(c*f^2 + a*g^2)*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[
c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sq
rt[-a]*Sqrt[c]*f - a*g)])/(3*Sqrt[c]*g^2*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 735

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 2*p + 1)), x] + Dist[(2*p)/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx &=\frac {2 \sqrt {f+g x} \sqrt {a+c x^2}}{3 g}+\frac {2 \int \frac {a g-c f x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{3 g}\\ &=\frac {2 \sqrt {f+g x} \sqrt {a+c x^2}}{3 g}+\frac {1}{3} \left (2 \left (a+\frac {c f^2}{g^2}\right )\right ) \int \frac {1}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx-\frac {(2 c f) \int \frac {\sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx}{3 g^2}\\ &=\frac {2 \sqrt {f+g x} \sqrt {a+c x^2}}{3 g}-\frac {\left (4 a \sqrt {c} f \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{3 \sqrt {-a} g^2 \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {a+c x^2}}+\frac {\left (4 a \left (a+\frac {c f^2}{g^2}\right ) \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{3 \sqrt {-a} \sqrt {c} \sqrt {f+g x} \sqrt {a+c x^2}}\\ &=\frac {2 \sqrt {f+g x} \sqrt {a+c x^2}}{3 g}+\frac {4 \sqrt {-a} \sqrt {c} f \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 g^2 \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}-\frac {4 \sqrt {-a} \left (a+\frac {c f^2}{g^2}\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{3 \sqrt {c} \sqrt {f+g x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.99, size = 456, normalized size = 1.42 \[ \frac {2 \sqrt {f+g x} \left (g^2 \left (a+c x^2\right )-\frac {2 \left (f g^2 \left (a+c x^2\right ) \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}-\sqrt {a} g (f+g x)^{3/2} \left (\sqrt {c} f+i \sqrt {a} g\right ) \sqrt {\frac {g \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{f+g x}} \sqrt {-\frac {-g x+\frac {i \sqrt {a} g}{\sqrt {c}}}{f+g x}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )+\sqrt {c} f (f+g x)^{3/2} \left (\sqrt {a} g-i \sqrt {c} f\right ) \sqrt {\frac {g \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{f+g x}} \sqrt {-\frac {-g x+\frac {i \sqrt {a} g}{\sqrt {c}}}{f+g x}} E\left (i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )\right )}{(f+g x) \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}\right )}{3 g^3 \sqrt {a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + c*x^2]/Sqrt[f + g*x],x]

[Out]

(2*Sqrt[f + g*x]*(g^2*(a + c*x^2) - (2*(f*g^2*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]*(a + c*x^2) + Sqrt[c]*f*((-I)*S
qrt[c]*f + Sqrt[a]*g)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f +
g*x))]*(f + g*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqr
t[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)] - Sqrt[a]*g*(Sqrt[c]*f + I*Sqrt[a]*g)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f
 + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-f - (I*Sqr
t[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)]))/(Sqrt[-f - (I*Sqrt[a]*
g)/Sqrt[c]]*(f + g*x))))/(3*g^3*Sqrt[a + c*x^2])

________________________________________________________________________________________

fricas [F]  time = 1.90, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{2} + a}}{\sqrt {g x + f}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)/sqrt(g*x + f), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{2} + a}}{\sqrt {g x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + a)/sqrt(g*x + f), x)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 688, normalized size = 2.14 \[ -\frac {2 \sqrt {c \,x^{2}+a}\, \sqrt {g x +f}\, \left (-c^{2} g^{3} x^{3}-c^{2} f \,g^{2} x^{2}-2 \sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{-c f +\sqrt {-a c}\, g}}\, a c f \,g^{2} \EllipticE \left (\sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}, \sqrt {-\frac {-c f +\sqrt {-a c}\, g}{c f +\sqrt {-a c}\, g}}\right )-a c \,g^{3} x -2 \sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{-c f +\sqrt {-a c}\, g}}\, c^{2} f^{3} \EllipticE \left (\sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}, \sqrt {-\frac {-c f +\sqrt {-a c}\, g}{c f +\sqrt {-a c}\, g}}\right )-a c f \,g^{2}+2 \sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{-c f +\sqrt {-a c}\, g}}\, \sqrt {-a c}\, a \,g^{3} \EllipticF \left (\sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}, \sqrt {-\frac {-c f +\sqrt {-a c}\, g}{c f +\sqrt {-a c}\, g}}\right )+2 \sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{-c f +\sqrt {-a c}\, g}}\, \sqrt {-a c}\, c \,f^{2} g \EllipticF \left (\sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}, \sqrt {-\frac {-c f +\sqrt {-a c}\, g}{c f +\sqrt {-a c}\, g}}\right )\right )}{3 \left (c g \,x^{3}+c f \,x^{2}+a g x +a f \right ) c \,g^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x)

[Out]

-2/3*(c*x^2+a)^(1/2)*(g*x+f)^(1/2)*(2*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c
)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*EllipticF((-(g*x+f)/(-c*f+(-a*c)^(1/2)*
g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*(-a*c)^(1/2)*a*g^3+2*(-(g*x+f)/(-c*f+(-a*c)^(
1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*
g)^(1/2)*EllipticF((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2
))*(-a*c)^(1/2)*c*f^2*g-2*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g
)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*EllipticE((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),
(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*a*c*f*g^2-2*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c
*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*EllipticE((-
(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*c^2*f^3-x^3*c^2*g^
3-x^2*c^2*f*g^2-x*a*c*g^3-a*c*f*g^2)/c/(c*g*x^3+c*f*x^2+a*g*x+a*f)/g^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{2} + a}}{\sqrt {g x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)/sqrt(g*x + f), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {c\,x^2+a}}{\sqrt {f+g\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c*x^2)^(1/2)/(f + g*x)^(1/2),x)

[Out]

int((a + c*x^2)^(1/2)/(f + g*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a + c x^{2}}}{\sqrt {f + g x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/(g*x+f)**(1/2),x)

[Out]

Integral(sqrt(a + c*x**2)/sqrt(f + g*x), x)

________________________________________________________________________________________